The Effect of Delignification and Hydrolysis Process on Isolated Cellulose from Saba Banana Fruit Peel (Musa acuminata × balbisiana)

  • Annisa Fauzana Universitas Andalas
  • Nadira Putri Universitas Abdurrab
  • Wahyu Margi Sidoretno Universitas Abdurrab
Keywords: Musa acuminata × balbisiana, cellulose, hydrolysis, delignification


Musa acuminata × balbisiana fruit peel is a waste that can be utilized to produce a biodegradable, non-toxic, and stable natural cellulose. Cellulose characteristics depend on their isolation process, such as delignification and hydrolysis process, and their natural sources. This research aims to determine the effect of different delignification and hydrolysis process on characteristic of isolated cellulose from Musa acuminata × balbisiana fruit peel. The isolation was conducted by different delignification process, which used sodium hydroxide with heating at 80° C for 20 and 30 minutes, and hydrolysis process using chloric acid and sulfuric acid. The isolated cellulose then was characterized using spectrophotometer FT-IR. The result showed that there were a decrease in absorption intensity, wave number shifts, and some missing peaks of the isolated cellulose by the delignification and hydrolysis process compared to the standard cellulose used.


[1] R. A. Ilyas et al., “Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr),” Text. Res. J., vol. 91, no. 1–2, pp. 152–167, 2021.
[2] M. Poletto, H. L. Ornaghi Júnior, and A. J. Zattera, “Native cellulose: Structure, characterization and thermal properties,” Materials (Basel)., vol. 7, no. 9, pp. 6105–6119, 2014.
[3] M. Åkerholm, B. Hinterstoisser, and L. Salmén, “Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy,” Carbohydr. Res., vol. 339, no. 3, pp. 569–578, 2004.
[4] D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, “Cellulose: Fascinating biopolymer and sustainable raw material,” Angew. Chemie - Int. Ed., vol. 44, no. 22, pp. 3358–3393, 2005.
[5] S. Y. Oh et al., “Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy,” Carbohydr. Res., vol. 340, no. 15, pp. 2376–2391, 2005.
[6] F. Hemmati, S. M. Jafari, M. Kashaninejad, and M. Barani Motlagh, “Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues,” Int. J. Biol. Macromol., vol. 120, pp. 1216–1224, 2018.
[7] R. Zuluaga, J. L. Putaux, J. Cruz, J. Vélez, I. Mondragon, and P. Gañán, “Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features,” Carbohydr. Polym., vol. 76, no. 1, pp. 51–59, 2009.
[8] P. Tingaut, T. Zimmermann, and G. Sèbe, “Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials,” J. Mater. Chem., vol. 22, no. 38, pp. 20105–20111, 2012.
[9] T. Keplinger, F. K. Wittel, M. Rüggeberg, and I. Burgert, “Wood Derived Cellulose Scaffolds—Processing and Mechanics,” Adv. Mater., vol. 33, no. 28, pp. 1–19, 2021.
[10] R. A. Ilyas, S. M. Sapuan, and M. R. Ishak, “Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata),” Carbohydr. Polym., vol. 181, no. October 2017, pp. 1038–1051, 2018.
[11] W. Liu et al., “Highly Efficient and Sustainable Preparation of Carboxylic and Thermostable Cellulose Nanocrystals via FeCl3-Catalyzed Innocuous Citric Acid Hydrolysis,” ACS Sustain. Chem. Eng., vol. 8, no. 44, pp. 16691–16700, 2020.
[12] D. Trache, M. H. Hussin, M. K. M. Haafiz, and V. K. Thakur, “Recent progress in cellulose nanocrystals: Sources and production,” Nanoscale, vol. 9, no. 5, pp. 1763–1786, 2017.
[13] A. Fauzana, R. Rohmawati, and M. A. Herly, “Aktivitas Antioksidan Ekstrak Kulit Garcinia Mangostana L. Pada Variasi Suhu Pengeringan,” JOPS (Journal Pharm. Sci., vol. 4, no. 2, pp. 37–43, 2021.
[14] M. Jonoobi et al., “Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review,” Cellulose, vol. 22, no. 2, pp. 935–969, 2015.
[15] A. Dufresne, “Nanocellulose: A new ageless bionanomaterial,” Mater. Today, vol. 16, no. 6, pp. 220–227, 2013.
[16] M. Poletto, V. Pistor, M. Zeni, and A. J. Zattera, “Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes,” Polym. Degrad. Stab., vol. 96, no. 4, pp. 679–685, 2011.
[17] M. F. Rosa et al., “Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior,” Carbohydr. Polym., vol. 81, no. 1, pp. 83–92, 2010.
[18] K. Fackler, J. S. Stevanic, T. Ters, B. Hinterstoisser, M. Schwanninger, and L. Salmén, “FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells,” Holzforschung, vol. 65, no. 3, pp. 411–420, 2011.
[19] F. Xu, J. Yu, T. Tesso, F. Dowell, and D. Wang, “Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review,” Appl. Energy, vol. 104, pp. 801–809, 2013.
[20] V. Hospodarova, E. Singovszka, and N. Stevulova, “Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials,” Am. J. Anal. Chem., vol. 09, no. 06, pp. 303–310, 2018.
[21] M. C. Popescu, C. M. Popescu, G. Lisa, and Y. Sakata, “Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods,” J. Mol. Struct., vol. 988, no. 1–3, pp. 65–72, 2011.
[22] C. M. Popescu, M. C. Popescu, and C. Vasile, “Structural changes in biodegraded lime wood,” Carbohydr. Polym., vol. 79, no. 2, pp. 362–372, 2010.
[23] M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L. A. Berglund, and J. Wohlert, “Cellulose and the role of hydrogen bonds: not in charge of everything,” Cellulose, vol. 29, no. 1, pp. 1–23, 2022.
[24] B. A. Frost and E. Johan Foster, “Isolation of thermally stable cellulose nanocrystals from spent coffee grounds via phosphoric acid hydrolysis,” J. Renew. Mater., vol. 8, no. 2, pp. 187–203, 2020.
[25] J. Lazko et al., “Acid-free extraction of cellulose type I nanocrystals using Brønsted acid-type ionic liquids,” Nanocomposites, vol. 2, no. 2, pp. 65–75, 2016.
[26] E. Gümüskaya, M. Usta, and H. Kirci, “The effects of various pulping conditions on crystalline structure of cellulose in cotton linters,” Polym. Degrad. Stab., vol. 81, no. 3, pp. 559–564, 2003.
[27] H. L. Ornaghi, M. Poletto, A. J. Zattera, and S. C. Amico, “Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers,” Cellulose, vol. 21, no. 1, pp. 177–188, 2014.
[28] R. M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne, and H. Kargarzadeh, “Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius),” Carbohydr. Polym., vol. 88, no. 2, pp. 772–779, 2012.
[29] F. Luzi et al., “Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres,” Ind. Crops Prod., vol. 56, pp. 175–186, 2014.
[30] J. Geboers, S. Van de Vyver, K. Carpentier, P. Jacobs, and B. Sels, “Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid,” Chem. Commun., vol. 47, no. 19, pp. 5590–5592, 2011.
How to Cite
Fauzana, A., Putri, N., & Sidoretno, W. (2023). The Effect of Delignification and Hydrolysis Process on Isolated Cellulose from Saba Banana Fruit Peel (Musa acuminata × balbisiana). JPK : Jurnal Proteksi Kesehatan, 11(2), 86-93.